top of page

Current Research

iqClock [Link]

iqclock testbed.png

Optical clocks are amazingly stable frequency standards, which would be off by only one second over the age of the universe. Bringing those clocks from the laboratory into a robust and compact form will have a large impact on telecommunication (e.g. network synchronization, traffic bandwidth, GPS free navigation), geology (e.g. underground exploration, monitoring of water tables or ice sheets), astronomy (e.g. low-frequency gravitational wave detection, radio telescope synchronization), and other fields. Likewise, techniques developed for robust clocks will improve laboratory clocks, potentially leading to physics beyond the standard model. Picture is the Testbed setup with lattice beam and clock beam in the vertical direction.


Long Range Interaction 

Picture 1_soc2_setup.jpg

This project aims to characterise and study long-range interactions with collective light scattering from a dense, ultracold Sr atomic ensemble trapped in deep optical lattice in a Mott insulator state. Such long range dipole-dipole interactions between atoms are induced via coherent exchange of photons when the inter-atomic distance is comparable to or smaller than the wavelength of the photons emitted by atoms.


In order to attest the dipolar interactions in the experiment, the Sr atoms are initially trapped in the MOT [2], and then transferred to an optical dipole trap for preparing a dense ultracold Sr atomic ensemble. The atoms will then be loaded in a 3D optical lattice and finally to a Mott insulator state. Once the atoms are loaded, the detection of long-range interactions can be facilitated with 2.6 µm laser as a probe. The Sr system provides an alternative platform to study long-lived collective states, opening pathways for potential applications in quantum information processing. Pictured is the assembly of ultra-high vacuum and science chamber and schematics of the LRI Experiment.

SOC-2; Space Optical Clock – II [Link]

​Today we use atomic clocks and strive for always higher precision levels to be achieved with new quantum technologies, in particular optical ones. The use of atomic clocks in space is a new challenge, which the SOC2 project takes on by developing compact and reliable designs.​

The Quantum Enabled Radar [Link]


Most radar systems are built for the purpose of detection and sensing of targets. Today, with the increasing complexity of the real world, we have to operate radars under challenging conditions such as high clutter urban environments and external interference. These conditions reduce the detection capability of radar systems. The quantum enabled radar network has the potential to overcome a lot of these issues with the use of technologies such as ultra-stable quantum oscillators to improve the phase noise of the radar’s local oscillator by orders of magnitude and enhance the sensitivity of the radar. Pictured is one of the Aveillant L-Band Staring Radars on Campus.

MoSaiQC: Modular Systems for Advanced Integrated Quantum Clocks [Link]


​​The unprecedented control over cold atoms has resulted in an extremely precise measurement of time and frequencies. In our lab, we work on enabling concepts through to asking very fundamental questions at the cutting edge of science.  We have PhD positions within the EU-ITN-MoSaiQC to train a cohort of young scientists at the frontiers of physics.  The PhDs will work on cutting edge projects developing novel concepts relevant to metrology and fundamental science. They will have access to our state-of-the-art labs and will also benefit from the European Collaborations as well as from our direct link to the UK National Quantum Technology Hub in Sensors and Metrology


ICON: International Clock and Oscillator Networking [Link]

Our research program aims to understand the interface challenges and clock frequency systematic shifts and uncertainties arising from direct clock frequency comparisons at the 10-18 level. This is crucial both to the national research base, and to the international base, especially with regard to a future SI second redefinition and its relevance to fundamental physics and emerging quantum technologies.


A field deployable Sr optical lattice clock with a laboratory level of precision has yet to be fully realised experimentally. Therefore, the aim of the Possible project is to create a transportable optical clock where precision is not compromised. Through research group expertise and collaboration with the National Physical Laboratory (NPL), this project will deliver a field deployable clock that is twenty times more accurate and three times smaller in volume than the current transportable optical clock systems.

Completed Projects

  • FACT – Future Atomic Clock Technologies, EU Marie Curie ITN network with 14 partners. [Link]

  • QTEA – Quantum Sensor Technologies and Applications, EU ITN Network. [Link]

  • GaNAMP [Link]

  • SLATE: Strontium Lattice for Commercial Optical Clocks [Link]

  • DPSS Laser stabilised at 813nm for Sr Clock Application  [Link]

  • QSense [Link]

  • Miniature Optical Lattice Clock

  • Strontium Optical LAttice Clock (SOLACE) [Link]

  • Compact optics for high performance portable atomic timing and quantum sensors [Link]

  • Network synchronisation better than 1ns using a frequency comb [Link]

  • PHASE-ZERO [Link]

  • iQ Clik 

bottom of page